Задача №457 457. Диагональ прямоугольника равна 10 см, а его периметр равен 28 см. Найдите стороны прямоугольника.
Решение задачи №457:
К сожалению, решение этой задачи на данный момент недоступно 1457. | Пусть стороны прямоугольника равны х и у. Тогда по теореме Пифагора х2 + у2 = 100; а периметр 2 (х + у) = 28;
х2 + У2 = 100 Г х2 + у2 = 100
х + у = Ы [ х — 14- у
196 - 28у + у2 + у2 = 100 х = 14 - у
2у2 - 28у + 96 = 0 х = 14 - у
у2 - 14у + 48 = 0; *
или |
Ответ: 6 см и 8 см.
2/1=8 XI = 6
Оцените это ГДЗ:
Рейтинг: 3.3/5 (Всего оценок: 4)
Выбор задания:
|