Помощь в математике. ГДЗ и решебники по математике для всех классов.
5 класс:
6 класс:
7 класс:
8 класс:
Таблицы:
Популярные разделы:
Полезные материалы:
 
Справочник -> Теория вероятностей. Аксиомы сложения и умножения вероятностей


Аксиомы сложения и умножения вероятностей

      Объединением (или суммой) нескольких случайных событий называется событие, состоящее в осуществлении по крайней мере одного из данных событий. Объединение событий А1, А2, ... , Аn обозначается через А1∪ А2∪ ... ∪ Аn или А1 + А2 + ... + Аn.
      Если объединяемые события несовместны (никакие два из них не могут произойти одновременно), то вероятность объединения нескольких событий равна сумме вероятностей объединяемых событий (аксиома сложения вероятностей):

P(А1∪ А2∪ ... ∪ Аn) = P(А1) + P(А2) + ... + P(Аn)

      Событие, состоящее в ненаступлении случайного события А, называется событием, противоположным событию А, и обозначается через . Объединение событий А и дает событие достоверное, а так как события А и несовместны, то

P(A) + P() = 1, или  Р() = 1 - Р(А).

      Если в результате данного испытания может наступить лишь одно из несовместных событий А1, А2, ... , Аn, то события А1, А2, ... , Аn образуют так называемую полную группу событий. Так как объединение событий полной группы является событие достоверным, то для таких событий имеет место равенство

P(А1) + P(А2) + ... + P(Аn) = 1

      Пересечением (или совмещением, произведением) двух случайных событий А1 и А2 называется сложное событие, заключающееся в одновременном или последовательном осуществлении обоих событий. Совмещение событий А1 и А2 обозначается через А1∩А2 или А1А2.
      Под условной вероятностью события А2 по отношению к событию А1 [обозначается Р(А21)] понимается вероятность осуществления события А2, определенная в предположении, что событие А1 имело место.
      Вероятность совмещения двух событий А1 и А1 равна произведению вероятности одного из них на условную вероятность второго по отношению к первому (аксиома умножения вероятностей):

P(А1∩А2) = P(А1) · Р(А21) = P(А2) · Р(А12).

      Два случайных события А1 и А2 называются независимыми, если условная вероятность одного из них по отношению к другому равна безусловной вероятности этого же события: Р(А21) = P(А2). В этом случае имеют место равенства:

P(А2/1) = P(А2/A1) = P(А2);     P(А1/A2) = P(А1/2) = P(А1);

      Для независимых событий вероятность их совмещения равна произведению их вероятностей:

P(А1∩А2) = P(А1) · Р(А2)

      Совмещение n событий А1, А2, ... , Аn (определяемое аналогично) обозначается через А1∩А2∩ ... ∩Аn.
      Условная вероятность события Аk, определенная в предположении, что осуществились события А1, А2, ... , Аk-1, обозначается P(Аk1∩А2∩ ... ∩Аk-1). Вероятность совмещения n событий по аксиоме умножения вероятностей определяется формулой

P(А1∩А2∩ ... ∩Аn) = P(А1)·Р(А21)·Р(А31∩А2)·...·P(Аn1∩А2∩ ... ∩Аn-1).

      Говорят, что n событий А1, А2, ... , Аn называются независимыми в их совокупности, если на вероятность осуществления каждого из них не оказывает влияния осуществление любых других, взятых в какой угодно комбинации.
      Вероятность совмещения n событий, независимых в их совокупности, равна произведению их вероятностей:

P(А1∩А2∩ ... ∩Аn) = P(А1)·P(А2)·...·P(Аn).


Задача 1
В урне 10 белых, 15 черных, 20 синих и 25 красных шаров. Вынули один шар. Найти вероятность того, что вынутый шар: белый; черный; синий; красный; белый или черный; синий или красный; белый, черный или синий.
Решение. Имеем n=10+15+20+25=70, Р(Б)=10/70=1/7, Р(Ч)=15/70=3/14, Р(С)=20/70=2/7, Р(К)=25/70=5/14. Применив аксиому сложения вероятностей, получим
Р(Б+Ч) = Р(Б) + Р(Ч) = 1/7 + 3/14 = 5/14;
Р(С+К) = Р(С) + Р(К) = 2/7 + 5/14 = 9/14;
Р(Б+Ч+С) = 1 - Р(К) = 1 - 5/4 = 9/14;


Задача 2
В первом ящике 2 белых и 10 черных шаров; во втором ящике 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Какова вероятность, что оба шара белые?
Решение. В данном случае речь идет о совмещении событий А и В, где событие А - появление белого шара из первого ящика. При этом А и В - независимые события. Имеем Р(А)=2/12=1/6, Р(В)=8/12=2/3. Применив аксиому умножения вероятностей, находим
Р(А∩В) = Р(А)·Р(В)=(1/6)·(2/3)=1/9.

Задача 3
Три стрелка стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,75, для второго - 0,8, для третьего - 0,9. Определить вероятность того, что все три стрелка одновременно попадут в цель и вероятность того, что в цель попадет хотя бы один стрелок.
Решение. Имеем Р(A) = 0,75, P(B)=0,8, P(C)=0,9. Тогда вероятность, что все три стрелка попадут в цель Р(А∩В∩С)=P(A)·P(B)·P(C)=0,75·0,8·0,9=0,54.
Вероятность промаха первого стрелка: Р()=1-Р(А)=1-0,75=0,25. Вероятность промаха второго и третьего стрелка соответственно 0,2 и 0,1. Тогда вероятность одновременного промаха всех стрелков 0,25·0,2·0,1=0,005. Но событие, противоположное к этому, является событие, заключающееся в поражении цели хотя бы одним стрелком. Следовательно, искомая вероятность равна 1-0,005=0,995.



Поставьте свою оценку:

Рейтинг: 1.7/5 (Всего оценок: 6)





 




© 2006-2021 Math.com.ua